Imaging Impurities in Semiconductor Nanostructures
نویسندگان
چکیده
Atomic impurities are critical for many technologies. They are used to engineer the optical and electronic properties of semiconductors for applications such as transistors, solar cells, lightemitting diodes (LEDs), and lasers, as well as to store energy for applications such as batteries and electrochemical cells. While the characterization and understanding of impurities in bulk semiconductors is well developed, new challenges arise at the nanoscale. In particular, methods are needed to characterize structures that may only contain a few impurity atoms. With such techniques, a fundamental understanding of how atomic impurities affect the properties of semiconductor nanostructures could be more fully developed. In this review, we give a brief introduction to the benefits and challenges associated with the incorporation of impurities in nanoscale structures, a process known as doping. We then focus on techniques used to characterize and image atomic impurities in semiconductor nanostructures. Advances in electron microscopy allow researchers to probe the dynamics of impurity incorporation with in situ transmission electron microscopy (TEM), and techniques such as electron energy loss spectroscopy (EELS) coupled with annular dark-field scanning transmission electron microscopy (ADF-STEM) allow individual atomic impurities in semiconductor nanostructures to be detected and imaged. Likewise, techniques such as atom probe tomography (APT) enable the full atomic reconstruction of nanoscale materials.
منابع مشابه
Imaging "invisible" dopant atoms in semiconductor nanocrystals.
Nanometer-scale semiconductors that contain a few intentionally added impurity atoms can provide new opportunities for controlling electronic properties. However, since the physics of these materials depends strongly on the exact arrangement of the impurities, or dopants, inside the structure, and many impurities of interest cannot be observed with currently available imaging techniques, new me...
متن کاملEnhancement of carrier mobility in semiconductor nanostructures by dielectric engineering.
We propose a technique for achieving large improvements in carrier mobilities in 2- and 1-dimensional semiconductor nanostructures by modifying their dielectric environments. We show that by coating the nanostructures with high-kappa dielectrics, scattering from Coulombic impurities can be strongly damped. Though screening is also weakened, the damping of Coulombic scattering is much larger, an...
متن کاملFabrication of Ultraviolet Photodetector Based on ZnO Nanostructures and Calcium Impurities Using Sol-Gel Method
In this paper an ultraviolet (UV) photodetector has been fabricated using ZnO nanostructures. The cheap fabrication process, high-quality nanostructures and the desired results for the photodetector are the most important characteristics of the proposed method. ZnO nanostructures have been grown using sol-gel method. In order to increase the sensitivity, calcium impurities have been added to na...
متن کاملTheoretical Investigation of Doping Concentration in Silicon Semiconductor Using Optical Principle
This paper investigates the amount of doping concentration in silicon semiconductor using optical principle. Both donor and acceptor impurities of n type and p-type silicon semiconductor materials are computed at wavelength of 1550 nm. During the computation of donor and acceptor impurities, both reflection and absorption losses are considered. Theoretical result showed that transmitted intens...
متن کاملEffects of on-center impurity on energy levels of low-lying states in concentric double quantum rings
In this paper, the electronic eigenstates and energy spectra of single and two-interacting electrons confined in a concentric double quantum rings with a perpendicular magnetic field in the presence of on-center donor and acceptor impurities are calculated using the exact diagonalization method. For a single electron case, the binding energy of on-center donor and acceptor impurities ar...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2013